Hardness Testing:

Since the definitions of metallurgic ultimate strength and hardness are rather similar, it can generally be assumed that a strong metal is also a hard metal. The way the three of these hardness tests measure a metal’s hardness is to determine the metal’s resistance to the penetration of a non-deformable ball or cone. The tests determine the depth which such a ball or cone will sink into the metal, under a given load, within a specific period of time. TISL offers Brinell and Rockwell hardness testing methods.


bht.jpgBrinell Hardness Test:

Brinell hardness is determined by forcing a hard steel or carbide sphere of a specified diameter under a specified load into the surface of a material and measuring the diameter of the indentation left after the test. The Brinell hardness number, or simply the Brinell number, is obtained by dividing the load used, in kilograms, by the actual surface area of the indentation, in square millimetres. The result is a pressure measurement, but the units are rarely stated.



rht.jpgRockwell Hardness Test:

The Rockwell Hardness test is a hardness measurement based on the net increase in depth of impression as a load is applied. Hardness numbers have no units and are commonly given in the R, L, M, E and K scales. The higher the number in each of the scales means the harder the material.

Hardness has been variously defined as resistance to local penetration, scratching, machining, wear or abrasion, and yielding. The multiplicity of definitions, and corresponding multiplicity of hardness measuring instruments, together with the lack of a fundamental definition, indicates that hardness may not be a fundamental property of a material, but rather a composite one including yield strength, work hardening, true tensile strength, modulus of elasticity, and others. In the Rockwell method of hardness testing, the depth of penetration of an indenter under certain arbitrary test conditions is determined. The indenter may either be a steel ball of some specified diameter or a spherical diamond-tipped cone of 120° angle and 0.2 mm tip radius, called Brale. The type of indenter and the test load determine the hardness scale(A, B, C, etc